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The recently developed method of Flux-Corrected Transport (FCT) can be applied to 
many of the finitedifference transport schemes presently in use. The result is a class of 
improved algorithms which add to the usual desirable properties of such schemes- 
conservation, stability, second-order (in some cases) accuracy, etc.-the property of 
maintaining the intrinsic positivity of quantities like density, energy density, and pressure. 
Illustrations are given for algorithms of the Lax-Wendroff, leapfrog, and upstreaming 
types. The errors introduced by the flux-correction process which lies at the heart of the 
method are cataloged and their effect described. Phoenical FCT, a refinement which 
minimizes residual diffusive errors, is analyzed. Applications of FCT to genera1 fluid 
systems, multidimensions, and curvilinear geometry are described. The results of 
computer tests are shown in which the various types of FCT are compared with one 
another and with some conventional algorithms. 

I. INTR~DLJCT~~N 

This paper is the second in a planned series of four dealing with the newly 
developed subject of flux-corrected transport (FCT) algorithms for transient 
continuity and convective equations. The first paper of the series [l] (which we 
shall henceforth designate as FCT/l), introduced the subject of flux-corrected 
transport in the context of a simple one-dimensional algorithm which we named 
SHASTA. The mesh was uniformly spaced and stationary and only very simple 
1-D test problems were presented for illustration and comparison. 

The referees, readers, and the many subsequent users asked three important 
questions: 

(1) How does FCT really work; what elements in the interaction of transport, 
diffusion, and nonlinear flux-correction operations are essential? 

(2) What is the optimum FCT algorithm to use in a given circumstance; what is 
the very best that can be done? 

(3) How can the techniques be generalized to complicated fluid problems, 
curvilinear coordinates, and multidimensions? 
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This paper esays to answer these three questions in a manner both easily rea- 
dable and directly applicable. Some general aspects of optimal algorithms and 
error/stability analyses are deferred, however, until the third paper of the series[2]. 
It should be emphasized that FCT is a technique, not a differencing scheme or a 
specific algorithm. Mastery of this technique, we believe, enables one to generate 
painlessly computer programs for solving fluid equations with markedly better 
accuracy and “physicalness” than conventional codes of comparable speed and 
memory requirements. 

Throughout this introductory section we purposely omit to specify the system of 
equations being solved. When we discuss specific differencing schemes in what 
follows, the dependent variable will be denoted p. Unless we state otherwise, it is 
understood that the equation propagating p is the continuity equation 

(+/at) + v * (pv) = 0, (1) 
where v is a given velocity field. Broadly speaking, most finite-difference equations 
with convective derivatives can be treated profitably by FCT methods. Examples 
are the gas dynamic equations, the Vlasov equation, and the MHD inductive law 
for propagating a magnetic field. On the other hand, equations describing a system 
in which a moderate amount of diffusion dominates convection generally do not 
require FCT treatment. For such equations the results are essentially the same 
with or without FCT. 

Flux correction yields qualitatively superior results when the physics of a 
problem requires that a steep gradient be propagated. Such gradients may represent 
a shock profile, a shock-tube endwall boundary layer, or an abrupt change in a 
species concentration. Conventional Eulerian methods of treating such a situation 
are often unsatisfactory because they introduce a large numerical diffusion, or 
overcorrect and introduce numerical dispersion, or drastically reduce the mesh 
size (and hence often the timestep) in the region of the difficulty, or require special 
knowledge of the solution (e.g., shock fitting and some multidimensional Lagran- 
gian techniques). Most of these problems can be related to a single diseconomy: 
the finite difference approximation becomes inefficient when steep gradients must 
be treated. FCT, in contrast, is an automatic way of applying a kind of “minimal 
fix” which localizes the errors to the troublesome regions alone. 

The essential idea of FCT is the application of a corrective diffusion to a dis- 
persive transport scheme, localizing the diffusion in just those regions where non- 
physical ripples tend to form on account of dispersion. This corrective diffusion is 
nonlinear: its magnitude depends on the values of p from point to point. The 
diffusion is carried out in a conservative way; that is, whenever a quantity of fluid 
is subtracted at one point, that same amount is added back on somewhere else. 
Thus, small corrective quantities of material are shoved from point to point 
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locally, but no net loss or gain to the system as a whole results. However, the 
equation being differenced need not be in conservative (flux) form. For example, 
one can difference the pressure equation instead of the energy equation. This 
approach has been exploited with good results, but for the present general discus- 
sion we will assume the equation being differenced describes a conservation 
condition. 

If, for a given velocity field U(X), we knew in advance exactly what a given density 
profile should look like after transport through one timestep t, it would be easy to 
calculate where to apply diffusion and how much. But, of course, we do not know. 
There is apparently no simple criterion for determining the amount of this diffusion 
a priori. Furthermore, as is shown in Section II, approaches based on simple 
approximations for this amount do not yield the best results. What FCT attempts 
to do is apply a sufficient diffusion everywhere, then cancel it out with an equal and 
opposite antidiffusion where it is clearly not needed. The criterion for this is built 
into the “flux limiter.” The flux limiter is a nonlinear operation which transforms 
the antidiffusion from something which is essentially the negative of the diffusion. 
to something which differs from this in the neighborhood of steep gradients of p. 

In FCT/l it was shown that an FCT algorithm consists of three finite-difference 
operations: a transport and a diffusion followed by an antidiffusion. The transport 
and diffusion may be performed either as a single operation or as two successive 
operations. We can represent the action of these various stages respectively by 
means of the three symbolic operations T, D, and A. The first two of these are 
linear. Thus the old values of the density {pj”} are carried by (1 + T) into 
transported values (pj’}, and can be subsequently diffused to become {prD}, and 
become after antidiffusion the values at the new timestep, {pjl}. Symbolically, for 
the explicit version of FCT, 

and 

pTD = (1 + T + D) p”, 

p1 = (1 + A) fTD = (1 + A)(1 + T + D) p”. 

Denoting by F the operation which carries p” into pl, we have for explicit FCT, 

F = (1 + A)(1 + T + D). 

The order in which these operations are carried out is important, as they do not in 
general commute. 

Since all three component operations are conservative, F is also. Furthermore, 
as a result of the application of the flux limiter, the antidiffusion 1 + A is positive. 
(An operator L2 is said to be positive if pi > C, all j, implies -3pj > C also.) Simi- 
larly, pi < C, allj, implies (1 + A) pj < C. In general, (1 + D) shares this property 
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but (1 + T) does not. It was shown in FCT/l that the diffusive transport stage of 
SHASTA, where T and D are combined in a single stage, is positive if 

everywhere. When T and D are distinct, it is necessary to define the latter so that 
the composite operator (1 + T + D) is positive. If this is done, the total operator 
F is itself positive. We discuss this point at length in Sections II and III below. 

The remainder of the paper is structured as follows: 
Section II treats the important subject of the diffusion/antidiffusion process. We 

discuss variable and adjustable diffusion coefficients, implicit antidiffusion, and 
phoenical FCT. The term “phoenical” refers to a class of diffusion/antidiffusion 
prescriptions which leave unchanged the variable being propagated when (1 + T) 
reduces to the identity operation, i.e., leaves no residual diffusion. 

In Section III we discuss generalizations to transport schemes other than 
SHASTA. The (1 + T) operator can be any of the various finite difference algo- 
rithms conventionally used to solve fluid equations. We describe their advantages 
and disadvantages and illustrate the discussion with simple tests. 

In Section IV we discuss the formulation of the flux-limiting prescription and 
analyze its operation. Several generalizations are described. We investigate the 
types of error introduced by the limiter and show how to estimate their magnitude. 
Various devices for avoiding or minimizing such errors are discussed. 

In Section V we discuss the application of FCT to multidimensions, to non- 
Cartesian (curvilinear) geometries, and to the propagation of irrotational vector 
fields. 

In Section VI we compare the results of FCT techniques with those obtained by 
other methods and present our conclusions. Detailed investigation of the phase 
and amplitude properties and of stability (linear and nonlinear) of FCT algorithms 
will be described in the next paper of this series, now in preparation. 

II. DIFFUSION AND ANTIDIFFUSION 

One shortcoming of the original explicit version of the SHASTA FCT algorithm 
is the tendency for residual velocity-independent diffusion to damp short wave- 
lengths even when the flow velocity vanishes. When the flow is nonzero, the residual 
diffusion is quite small (of order 3, where E = vSt/Sx). Even so, any residual 
diffusion is undesirable. It was shown in Appendix A of FCT/l that this residual 
diffusion can be removed using a form of implicit antidiffusion. Nevertheless, 
using an implicit algorithm can be unsatisfactory for two reasons: (1) The nonlocal 
aspect of implicit algorithms can give erroneous results in the neighborhood of 
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shocks; and (2) the recursion relations which must be solved do not lend them- 
selves to efficient direct solution on the new vector and pipeline machines. 

Two other techniques are available to achieve the same goal. One introduces a 
variable diffusion/antidiffusion coefficient q; the other, phoenical antidiffusion, 
involves incrementing the raw antidiffusion fluxes with higher-order terms which 
cause exact cancellation with the diffusion when v = 0. (The term “phoenical” 
derives from “phoenix”: features which sagged into shapelessness in the diffusion 
stage are “reincarnated” and restored to their original form during antidiffusion.) 
Here we describe and analyze these two explicit techniques for reducing residual 
diffusion. 

Variable DQjksionlAntidiffusion CoefJicient 

It is a routine matter to change 7 from one time or space step to the next; the 
only precautions necessary are to make sure essentially the same value is used in 
both diffusion and antidiffusion and to ensure conservation. Since residual diffusion 
and the errors introduced by the flux correction process (Section IV) are both 
proportional to T, it is obviously desirable to choose q as small as possible consis- 
tent with avoiding nonphysical dispers+ve ripples. 

It is easy to make this condition quantitative. Since most transport schemes we 
deal with are three-point formulas, we can write the result of transport alone as: 

(1 + T) pj = /3jT = Cj+pj+l + Cj”pj + Cj-pi-1 e 

The C’s are in general functions of velocity. Conservation imposes the restriction 

The result of simultaneously applying transport and three-point diffusion (with 
coefficient 7 taken to be constant in space to simplify the argument) is 

(1 + T + D) pj = pj’” = (Cj+ + 7) pj+l + (Cio - 27) pi + (Cj- + 7) pj-1. (2) 

The p’s may have any positive values we assign them. p:“, the result of diffusive 
transport, must be positive. Thus, Ci+ + 7, Cj” - 277, C’- + 7 should all be 
positive to insure this. This imposes restrictions both on 7 and the step size. To 
see this we note that Cj* can be negative. Hence, 

r] 2 myx(-Ci*) (3) 

must hold. But Cio 3 27 must hold everywhere also. Since Cj” + 1 when uSt/Sx -+ 0 
uniformly, this is always possible for sufficiently short timestep St, provided r] < 0.5. 
Thus, we find 7 by taking the equality in (3), and St is restricted through 

Cj”lst) 2 27, all j. 
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We illustrate this for the case of SHASTA. From FCT/l, Eq. (7), we find the 
transport coefficient by subtracting the zeroth-order diffusion (7 = +) already 
included: 

Cj+ = &Q,z - Q, 

(7’ = Q+G - Q+> + Q-t; - Q-1 + 9, 
Cj- = $81” - Q, 

where 

Q-l: = (l/2 F ?y St/Sx)/[l f <u;:“, - #“) St/Sx]. 

We consider two models. Suppose we know on physical grounds that all veloci- 
ties are positive, and bounded by some V: 

Then we can set 

0 < Vj < V (allj). 

77 = vr = max(-Ci*) = 3z(l - Z/2)/4(1 + z)~, 

where 
c = i%t/sx. 

If the bound fi is related to St by 

(the restriction imposed in the original formulation of SHASTA), then we recover 
the original coefficient rlllZ = 0.125. If, however, 2 = 0.25 (say), then a coefficient 
7)1/d = 0.105 suffices. 

In the second case, we assume only that the absolute value of velocity is bounded 
by some (time-dependent) 6: 

0 < 1 vy 1 < 6. 

Then we find that we can set 

y = max(- C,*) = c/(1 + 2Z)2. 

For Z = 0.25, 17 = 9 suffices. Again, if Z --f 0.5, v + 0.125. 
Thus, it is clear that, if we have a bound on velocity, it is possible to improve on 

the flux-correction by reducing 7 and hence, the errors introduced by FCT. The 
reduction in 7) is often not impressive, but there is essentially no penalty for doing 
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this in most cases. Velocity bounds can be calculated in a single pass through the 
mesh, or even as it is being updated at the completion of the momentum transport. 

It is natural to ask if one can reduce residual diffusion still further by letting 7 
vary as a function of position. The purpose of this is to cut down the numerical 
errors which scale like 71 (in the uniform flow case). This improvement is feasible, 
but calculating 7 at each point can exact a significant price in CPU time (about 
20-30x). Saving {qj> until antidiffusion is carried out also requires storing an 
additional array, usually a trivial consideration. 

This latter drawback may be avoided altogether by using a small local diffusion, 
just sufficient to wipe out ripples, and not antidiffusing at all. On the face of it, this 
appears to be big improvement; it looks more efficient than applying a diffusion 
and then cancelling it out almost entirely. When this prescription is coded as 
“flux-corrected diffusion” and actually tested, however, the results are dis- 
appointing (see Fig. 1). For this purpose the same standard test is used as in 

a 
Xbll no.)- CELL NO - 

FIG. 1. (a) Initial conditions for the standard square wave test. (b) Result of square wave 
test with flux-corrected diffusion after 800 cycles. The analytic solution is represented by a solid 
curve, the computed result by dots. The mean absolute error (A.E.) is 0.082. 

FCT/l. The 1-D advective equation is solved on a periodic system 100 mesh points 
across, with a constant advective velocity v. Except when noted, the timestep St is 
taken so that v&/8x = 0.2, where 6x is the mesh space. A square wave 20 mesh 
points across, with height pmax = 2.0, is superposed on a background prnin = 0.5. 
The square wave starts at the left extremity of the system, propagates to the right, 
and periodically reenters on the left. Using flux-corrected diffusion the mean 
absolute error after 800 cycles is 0.082, about 60 % larger than for explicit SHASTA 
with 7 = 0.125, and the square wave has an eroded appearance which compares 
unfavorably with explicit SHASTA (cf. FCT/l, Figs. 3,4). Partially offsetting this 
is the shorter running time associated with tlux-corrected diffusion, only ~20 % 
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larger than with the uncorrected scheme. As a consequence, flux-connected diffusion 
should be restricted to applications where getting rid of the worst dispersive ripples 
is enough. 

We can understand why better results are achieved by diffusing first, then 
antidiffusing with corrected fluxes, if we note that the additive diffusion in the 
definition of prD, Eq. (2), changes the phase properties of the algorithm. This 
would not be the case if the diffusion were applied as a separate operation on piT, 

Pf = (1 + w + T) pj = (1 + D) pf, 

i.e., multiplicatively. In fact, the strong added diffusion improves the phase proper- 
ties by a factor of four in the case of SHASTA (see FCT/l). 

There is another way to make use of spatially varying diffusion in FCT. We 
observe that, for conservative three-point differencing schemes, whenever the flow 
velocity actually attains the bound 6, one of the two coefficients Cj* vanishes and 
the transport reduces to a two-point formula, that is, local “upstream” differencing. 
The implication is that upstream (donor cell) differencing is the diffusive transport 
scheme which embodies the minimum diffusion necessary to keep p positive. The 
result can then be antidiffused (after appropriate flux correction) to eliminate most 
of the dissipation. We may expect that the final profile will be improved over the 
simple first-order “upstream” or “windward” formula, but of course again without 
the full diffusive phase improvements. In Section III we will see that this is indeed 
the case. 

Phoenical Antidiffusion 

When u = 0, then the T operation vanishes. We can then write for the density 
profile before antidiffusion 

PiD = Pi(l - 211) + &%I+ Pj+d 

For a Fourier harmonic of wave number k, the analytic solution of Eq. (1) for p at 
the nth timestep is 

pj = &bYl-cn) , 

where p = k8x and E = v&/6x. Hence for E = 0, 

pjD/pj = 1 + 27l(COS p - 1). 

If the antidiffusive fluxes are defined (as in explicit SHASTA) by 

h+l/Z = dPiD+l - PjD)9 14') 
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then the result of uncorrected antidiffusion is 

PP*/Pj = [Pj"(l + 21) - T(P,D-l + PLdI/Pj 

= [I - 27j(cos /3 - I)][1 + 2v(cos j3 - I)] 

= 1 - 4772(cos fl - 1)“. 

For long wavelengths, this looks like a residual diffusion with coefficient q2. 
If the antidiffusive fluxes had satisfied 

ff+li2 = rl(Pj+l - Pj) (4) 

rather than using the diffused values pD as in Eq. (4’) above, antidiffusion would 
have exactly cancelled diffusion: 

pi”” = pjD - f LlI2 + f ?-l/2 = Pi * 

We antempt, then, to define the antidiffusive fluxes in general so that they reduce 
to (4) when the flow field vanishes. 

The simplest such definition is the following one: 

pjl = pj’” - f ;+1,2 + f i-l/2 3 (5) 
where 

Equation (6) clearly has the desired property. Because the antidiffusive fluxes 
depend on pjT and not pT*, they are larger than in the explicit case and thus 
antidiffusion in this phoenical way clearly has to leave smaller residual diffusion. 
When u is not identically zero, small additional terms of order l 2 appear. For 
example, from FCT/l, Eq. (12), we see that SHASTA satisfies 

pTD/pi = 1 + (l/4 + c2)(cos p - 1) - ie sin p. 

Subtracting the zeroth-order diffusion (T = i) yields 

piT/pi = 1 + r2(cos p - 1) - ic sin /3, 

so that uncorrected phoenical antidiffusion has an amplification factor 

( pjl/pjo I* = 1 - 2~~ sin4 @/2)[1 + * sin2 (/3/2)]{1 + sin2 (J/2) 

- 23[1 + i sin2 (/3/2)]}. (7) 

For long wavelengths this differs from unity by a quantity --~~(/3/2)~ compared 
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with a residual discrepancy ~$(8/2)~ for explicit SHASTA (FCT/l, Eq. (20)). For 
/3 + 27r, the amplification factor becomes I pil/pj I* = (1 - 3~~)~ and thus is stable 
for E* < 6; the corresponding result for explicit SHASTA is seen to be e2 < A. 

We now summarize the methods of explicit, implicit and phoenical diffusion/ 
antidiffusion by means of the operator notation introduced earlier. The three can 
be written respectively as: 

pjE = (1 + 41 + T + D) pj”, (8) 

pjr = (1 + D)-’ (1 + T + 0) pj”, (9) 

pjp = [(I + 4(1 + T) + Dl pj”. (10) 

If one shuts off the flux limiter, thus eliminating the nonlinear effects of flux 
correction, it is clear that when T + 0 and A + -D, Eqs. (9) and (10) reduce to 
the identity operation, but Eq. (8) does not. 

Figure 2 shows the results of the standard square wave test (see above) using 
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- DIFF: COEF q 0.125 

2- r h 
.- . . 

I : . . 

p I- . 

. 
. 

. 
- -. 

A.E. = ,052 : 

0 ~~~~“~~~‘1~~(“‘~~“I~~‘~II~. 
40 so 60 70 so so 100 

0 11’1”‘1”‘1”““I”“““ll 
40 50 60 70 60 SO (00 
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A.E. = ,044 
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FIG. 2. Square wave test with phoenical SHASTA using timestep (a) 8t = 0.2, 800 cycles, 
and (b) 6t = 0.4,400 cycles. Note that the mean absolute error is lower for case (b), because the 
residual diffusion left by FCT scales with the number of cycles. 

phoenical SHASTA with a diffusion/antidiffusion coefficient 7 = 0.125. Shown 
are plots of the density profile for 61 = 0.2 after 800 cycles and for 6r = 0.4 after 
400 cycles; the square wave has travelled the same distance in both cases, but E 
equals 0.2 and 0.4 respectively. Since the residual diffusion depends on the E- 
independent nonlinear flux correction as well as the well-behaved E dependences, 
taking fewer but longer timesteps is clearly advantageous. (See FCT/l, Fig. 10, for 
a comparison with the explicit and implicit methods.) 

Phoenical FCT algorithms yield results essentially identical with those of flux- 
uncorrected schemes in the absence of large gradients, just as ordinary explicit 
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FCT algorithms do. In addition, though, they leave unchanged steep fronts in 
regions where no disturbance takes place. This is important in application where 
a shock propagates into a stationary region in which gradients in concentration or 
temperature have been previously established. Since there is no appreciable 
penalty in running time or storage requirements for using phoenical instead of 
explicit antidiffusion, it is to be preferred in most applications. Therefore, most of 
the analyses and examples in the following sections will deal with phoenical FCT. 

III. APPLYING FLUX CORRECTION TO GENERAL DIFFERENCE SCHEMES 

In this section we give prescriptions for flux-correcting three finite-difference 
schemes commonly used in solving fluid equations: two-step Lax-Wendroff, 
leapfrog, and upstreaming (or donor-cell). Extension of the technique to many 
other algorithms in common use should follow by example and be quite straight- 
forward. 

Phoenical Lax- We&off 

Of the three, Lax-Wendroff (L-W) is closest to SHASTA. In fact, SHASTA 
reduces in the case of uniform flow velocity to L-W with a zeroth-order added 
diffusion (cf. FCT/l). We consider the continuity equation satisfied by a density 
pjR, carried along by a ilow field Ltjn. Here j labels the mesh point and n takes the 
values 0, g and 1 at the beginning, midpoint, and completion of a timestep, respec- 
tively. The midpoint values are defined on a staggered mesh at,j f 4. Assuming the 
flow field is known at each time, we solve for p1 as follows: 

(a) Advance p one-half timestep: 

(b) Generate diffusive fluxes from first differences of p,O 

(c) Advance p for the whole timestep: 

(d) Generate antidiffusive fluxes from first differences of ~~1 

f:+m = 7(iG+1 - ihl). 



FLUX-CORRECTED TRANSPORT 259 

(e) Diffuse the transported p using saved first differences: 

Pi’ = pjl + f ;+,,I, - f ;-,,, . 

(f) Take first differences of the diffused, transported density 

dj+lj* = /Sj’+l - /St. 

(g) Limit the antidiffusive fluxes: 

(h) Antidiffuse with the limited fluxes: 

Steps (a) and (c) are the usual half- and whole-step L-W transport operations. 
Steps (b) and (d)-(h), introduced by the flux-correction procedure, are easily coded, 
using two additional scratch arrays. An increase in CPU time of about 50 % over 
conventional schemes is demanded. However, conventional schemes are never 
actually run at this maximum timestep. In fluid simulations, the timestep is limited 
by (I u j + c) &/6x < 1, where c is the sound velocity, and by accuracy considera- 
tions. In direct comparisons of working codes we have made, FCT versions have 
run much faster for a given accuracy. 

Unlike SHASTA, the output from the diffusive transport (step (e)) in the 
Lax-Wendroff scheme is not intrinsically positive. If ujn is a constant, r) > 0.125 
suffices for positivity (as in SHASTA), but if the velocity varies with position and 
time, a larger value of 77 may be required because of the half-step modifications of p. 
For example, arguments similar to those of the preceding section show that if v is 
bounded, i.e., 1 vj”St/Sx 1 < 2, then 77 = Qg(1 + i) suffices for positivity, provided 
?<:(-I + 4/3)NN .366. For larger timesteps violating the latter restriction, 
because of the properties of the L-W transport stage, no diffusion coefficient 
guarantees positivity everywhere; this is one of our reasons for preferring SHASTA 
to Lax-Wendroff in practice. Since L-W and SHASTA are identical when applied 
to the constant-velocity test version of Eq. (l), the plots in Fig. 2 serve equally well 
to illustrate flux-corrected L-W. Figure 3 shows the relative efficacy of various 
levels of diffusion/antidiffusion. The plots show the results of the square wave test 
for 7 = 0.0, 0.0625, 0.125 and 0.5, respectively. Clearly, too much diffusion is as 
bad as too little, For coupled nonlinear equations in a variable medium, these 
constant-velocity results are only approximate; but experience shows that they are 
a very close approximation. 
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FIG. 3. Phoenical SHASTA (or Lax-Wendroff) with diffusion/antiditTusion coefficient 
(a) 7 = 0.0; (b) 7 = l/16; (c) 7 = l/8; (d) 7 = l/2. 

Leapfrog FCT 

Implementing FCT in the leapfrog scheme is somewhat harder because two 
distinct meshes are present. The tendency for solutions on the two meshes to 
separate (weak instability) is reflected in the computational difficulty in defining a 
suitable (anti-) diffusion. In general, when a flux connects two density meshes 
defined at different times, the (anti-) diffusion process in which this flux is employed 
is no longer conservative on either mesh independently. While it is feasible to apply 
FCT ignoring the difference between the two time levels in defining fluxes and 
differences, better results are obtained using two slightly more sophisticated 
approaches. The first proceeds as follows (we take n, j odd unless otherwise 
stated). 

(a) Compute diffusive fluxes: 

f:+,/, = 27(pjn;ll - pin)7 

fy-,,, = 27)+jn - p;3. 
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(b) Advance the densities on the even mesh using the leapfrog algorithm: 

n+1 
P.i+1 = Pj+1 %--l - (St/SX)(L’jn+$jn+2 - tij"pj")* 

(c) Advance the densities on the odd mesh: 

p = pjn - (st/sx)(v;~~p;~~ - ZJyp;?;). 
(d) Compute the antidiffusive fluxes: 

ff+1,2 = 2rl(Pi”+:l - km, 
fjl-112 = 2&y - p,“_:‘). 

(e) Apply the diffusion: 

-a+1 
Pjtl = Pi=:’ + f LlI2 - f Ytl& 9 
p”,“‘” = pint2 + fY+,,,, - f;--,,, . 

(f) Take first differences of the diffused transported p: 

Aitllz = p;;. - P”;+~, 

die,,, = ,isj”‘” - $2;. 

(g) Limit the fluxes 

S = sb(fX,d, 

f j”,l,, = S * max[O, min@ * 4--1,2 , I f :+,I2 I, S * Aj+1/2)I Wj). 

(h) Apply the antidiffusion: 

$+2 = py -fL +fL/2, 

n-b- -n-+1 
Pi+1 - Pi+1 - f L/2 - f L, * 

In this prescription 27 is roughly twice the diffusion coefficient used in SHASTA 
(9 = &). Since the FCT process is applied to “clean up” the profile effectively by 
using a doubled value of 7) every other timestep, it is not surprising that residual 
diffusion errors are somewhat larger. This is apparent in the square wave advection 
test (Fig. 4a). The algorithm is conservative only in a weakened sense: 

.; j (p,” + P3 = com 
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FIG. 4. Square-wave test with 

F LEAPFROG 2 

b CELL NO- 

two versions of flux-corrected leapfrog. 

if computed after the conclusion of the antidiffusion process, that is, every second 
timestep. 

The second method of putting flux correction into leapfrog is more of a brute- 
force technique. It involves increasing the number of mesh points (and hence the 
running time and resolution) by a factor of two. In the following description there 
is thus no restriction on n and j. 

(a) Calculate the diffusive fluxes of p: 

fX112 = ?@i”+l - Pi”). 

(b) Advance p: 

pin+2 = pj” - (6f/6X)(U~~~p,=:’ + U,n_:lpil_:. 

(c) Calculate antidiffusive fluxes: 

f:+l,2 = ?1<PZ - P:+2). 

(d) Apply diffusion: 

p;+2 = p;+2 +f;+,,, -f;--,,,. 

(e) Take first differences of p”: 

Aj+1,2 = ,$;f - ~“7”. 

(f) Limit the fluxes: 

S = Cdfi+liz)~ 
f,?+l!2 = S. max[O, min(S . AiPl,, , I fikl12 I, S. Aj+,,,)]. 
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(g) Apply the antidiffusion: 

This version is phoenical and fully conservative on the separate meshes. The 
result of propagating a square wave as before is shown in Fig. 4b. The error is 
smaller than in the first leapfrog method and comparable with that found with 
Lax-Wendroff. Only the derivative of one mesh interacts with the other. There is 
nothing in the algorithm which couples the two time levels, so one mesh could 
separate significantly from the second after many cycles. To prevent this, as in the 
usual leapfrog algorithm, some mesh averaging could be applied. 

Donor CeN (Upstreaming) 

Donor-cell (in contrast to Lax-Wendroff and leapfrog) is a first-order scheme. It 
embodies a velocity-dependent diffusion. By applying an antidiffusion stage with 
the same (velocity-dependent) value for the coefficient, where the antidiffusive 
fluxes have been corrected as above, we can obtain a fast, positive (in the sense of 
Section I) algorithm which is essentially second order to boot. The sequence of 
operation (all velocities assumed positive for simplicity) is 

(a) Transport p: 

f3i = pi0 - (St/aX)[pjOVjO - p~-~Vq-1]* 

(b) Compute the first differences: 

dj+l/f = pi+1 - pjl. 

(c) Correct the antidiffusive fluxes: 

S = sh3n{4+ld, 
h+1/2 = S * max{O, min[S * di--112 , Vi+l/2 I di+112 I , 

s - 4+3,21~9 
where 

(d) Antidiffuse: 

Titll2 = itcj+ldl - Ej+1/2)9 

Ej+1/2 = (h/8X) - max[vjo, Vj+J. 

Pi1 = Pjl -J;.+112 +A112 . 

Step (c) requires some comment, When the flow field is uniform (vi” = aon, allj), 
the antidiffusive coefficients reduce to 7 = &(l - E), where E = v,%/8x. (It is 

5ww3-3 
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just this choice of 71 which makes the algorithm second order, as may easily be 
verified, using the method of Section II.) For E = 4,~ = & as for SHASTA. When 
velocities of both signs are present, 1 Dj” 1 replaces ojo in the definition of qj+l,s . 

Donor-cell FCT is positive because, as with SHASTA, the diffusive transport 
and the antidiffusive stages are both positive. It is especially useful in applications 
where the flow field is uniform, although the phase properties are not optimum. 
Figure 5 shows the result of the square wave test. As is evident, the results are 

FLUX- CORRECTED 
DONOR CELL 

2- *.* * . . . . 

t : 
. 

PI- . 
. . . 

0 /III'II'/'II"""""'I'/'I' 
40 50 60 70 80 90 loo 

CELL NO - 

FIG. 5. Square-wave test with flux-corrected donor-cell (upwind or one-sided differencing). 

qualitatively similar for all three commonly used algorithms, and in each case very 
different from the result obtained in the absence of flux correction. 

As a rough guideline, we can recommend the following rules for deciding which 
algorithm to use with flux correction: 

(1) For an already existing code, the transport scheme already incorporated may 
be quite adequate and can be improved by the simple addition of a flux 
correction. 

(2) If it is desired to minimize dispersion while maintaining positivity, one of the 
versions of SHASTA should be used. 

(3) Donor-cell should be used when the values of the flow velocity ase small 
enough that phase errors are small compared with diffusive errors. 

IV. FLUX LIMITERS 

The antidiffusion stage of the algorithms described above and in FCT/l may be 
written 

Pi1 = l%l - .fL,, + f j”-,,2 , (11) 
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where jjjl is the result of diffusive transport alone and f&2 are the corrected 
(or limited) fluxes, given by 

f L2 = S . maxPA min[S . LI, , I fj+1,2 I, S .4+d. (12) 

Here fi+,,, is a raw or uncorrected flux, and S = sign{ ht,,,}. The exact definition 
of fj+l,z depends on the transport scheme employed, and on whether explicit, 
phoenical or implicit antidiffusion is used. We will speak of the densities at the 
two pointsj and j + 1 as being connected byA+,,, . When two densities are connec- 
ted during antidiffusion by a flux, the higher grows at the expense of the lower by 
the amount of the flux. 

The formulation (ll)-(12) is known as strong flux correction. It is fast-running 
and easy to code, but other prescriptions with useful properties are possible. Here 
we briefly describe how strong flux correction works and then consider modifica- 
tions. 

The input information used consists of the values off/+ilz , LI-~,~, and 4f+3,2 . 
Supposefk,,, > 0. (The opposite case exactly mirrors this one.)Then there are four 
possibilities: 

(4 dj-lin > 0, 4+3r2 > 0; 
(b) dj-l/z > 0, di+3/2 d 0; 
(C) dj-l,U < 07 dj+3/2 > O; 
(4 dj-.I,, < 0, dj+m < 0. 

These are represented schematically in Fig. 6. We consider the cases in order. 

(a) This is the “normal” situation. The limiter leavesf;+,,, unchanged unless the 
jth point would be pushed below the (j - 1)st or the (j + 1)st would be 
pushed above the (j + 2)nd, in which casesh,,,, is reduced (corrected) to 
avoid this. 

(b) Since nonvanishing fj+l,z would accentuate the maximum at the (j + 1)st 
point, the limiter setsA:,,, = 0. 

(c) The limiter sets&$,, = 0 to avoid accentuating the minimum at thejth point. 
(d) The limiter again setsf,c,l,z = 0; otherwise both extrema would be enhanced. 

The limiter thus guarantees that no local extrema (“ripples”) form or grow as a 
result of antidiffusion. We wish to stress, however, that the transport stage can 
cause local extrema to form and grow as the physics of the problem demands. 
Errors can arise during antidiffusion in two ways; The raw fluxJ;,+,,, may not be 
such as to yield the correct antidiffusion even when the limiter plays no role 
<Cl,2 = hL,J; or the limiter, which is decidedly pessimistic, may overcorrect the 
fluxes and leave an unnecessarily large net diffusion. We have already treated the 
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FIG. 6. The four different possibilities in correcting a positive flux connecting the points j 
and j + 1. In (a), the horizontal line segments indicate the distances beyond which the flux 
limiter will not allow the points j and j + 1 to be pushed. 

former problem in Section II; here we examine the errors introduced by the limiter 
itself. 

These errors are exhibited primarily in a phenomenon called “clipping.” Clipping 
occurs as a result of the property of Eq. (12) which forbids extrema present after 
diffusive transport has occurred from being enhanced in the antidiffusive stage. 

This is shown clearly in Tables I and II, and in Fig. 7. Consider the sharply 
peaked density profile whose values are displayed in Table I. We repeatedly diffuse 
and antidiffuse this density with a coefficient q = 9, using explicit antidiffusion: 

PjD = Pi + rl(Pj+, - 2Pi + Pi-A 

p,“” = PiD - q@jD - +jD + pf-d. 

The result is shown in successive lines of the table. It is, of course, identical with 
what would be obtained using an explicit FCT algorithm with zero flow velocity. 
As is clear, the profile is initially strongly diffused. After about 10 cycles, a distinct 
flattening or “clipping” is apparent at the peak of the profile. 

The explanation lies in understanding the action of strong flux correction. 
Clearly a local extremum (a maximum, say) which flattens when diffusion takes 
place wants to grow back again during antidiffision. But this cannot happen with 
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-a 
-----b 

---- C.d 

FIG. 7. Results of successively diffusing and antidiffusing the sharply peaked profile (a) 
20 cycles with diffusion/antidiffusion coefficient 7 = 0.2. Curve (b) is produced by explicit anti- 
diffusion, curves (c) and (d) (indistinguishable on the scale of the plot) by phoenical and implicit 
antidiffusion. 

TABLE I 

The result of successive diffusion/antidiffusion operations with flux limiting on a sharp 
peak (cf. Fig. 7) using 7) = l/8 and explicit antidiffusion. Although 11 points were employed 
across the mesh, the values found are symmetrical about j = 6, ~(12 - j) = po’), so those 

to the right of the peak are not shown. 

\ Grid pt. 1 2 3 4 5 6 
Cycle 

0 0.0 0.0 0.0 0.0 0.5 1.0 
1 0.0 0.0 0.0 0.05520 0.58880 0.71200 
2 0.0 0.0 0.0 0.09075 0.57789 0.66272 
3 0.0 0.0 0.0 0.12270 0.56290 0.62879 
4 0.0 0.0 0.0 0.15037 0.54841 0.60244 
5 0.0 0.0 0.0 0.17404 0.53555 0.58083 
6 0.0 0.0 0.0 0.19419 0.52446 0.56271 
7 0.0 0.0 0.00232 0.20900 0.51498 0.54741 
8 0.0 0.0 0.00652 0.21970 0.50655 0.53444 
9 0.0 0.0 0.01184 0.22769 0.49882 0.52328 

10 0.0 0.0 0.01779 0.23381 0.49164 0.51350 
15 0.0 0.0 0.04294 0.24884 0.46686 0.48273 
20 0.0 0.0 0.07095 0.25947 0.44239 0.45439 



268 BOOK, BORIS AND HAIN 

TABLE II 

As with Table II, but with implicit or phoenical antidiffusion, which are 
indistinguishable to within round-off. The entries marked with an asterisk 

are actually nonzero of order lo-: or less for the implicit case. 

Grid 
\ Cycle pt. 1 2 3 4 5 6 

0 0.0 0.0 0.0 0.0 0.5 1.0 

1 0.0 0.0 0.0 0.0 0.6 0.8 

2 o.o* o.o* o.o* 0.0 0.64 0.72 

3 o.o* o.o* o.o* 0.0 0.656 0.688 

4 o.o* o.o* o.o* 0.0 0.66496 0.67008 

5 o.o* o.o* o.o* 0.0 0.66598 0.66803 

6 o.o* o.o* o.o* 0.0 0.66639 0.66721 

7 o.o* o.o* o.o* 0.0 0.66656 0.66689 

8 0.0’ o.o* o.o* 0.0 0.66623 0.66675 

9 o.o* 0.0’ o.o* 0.0 0.66665 0.66670 

10 o.o* o.o* o.o* 0.0 0.66666 0.66668 

15 o.o* o.o* o.o* o.o* 0.66667 0.66667 

20 o.o* o.o* o.o* o.o* 0.66667 0.66667 

strong, flux correction, as a sharp feature becomes blunted. The single point at the 
peak of the maximum shown decreases by virtue of the fluxes it passes to its two 
neighbors. Each of these passes one flux downhill and one uphill (to the peak); 
these fluxes represent antagonistic tendencies which almost cancel out, so that the 
shoulders are eaten away more slowly than the peak. After 20 cycles an approxi- 
mately flat plateau three points across has formed (Fig. 7b). When this happens, 
the central point no longer gets pushed downward through diffusion, while anti- 
diffusion is permitted to push back the two points to either side, almost precisely 
compensating for the effects of diffusion on them. Hence a flat three-point plateau 
is a nearly stable structure. Clearly clipping is a nonlinear diffusion process which 
affects the short wavelength components more than the long. The characteristic 
plateau shape is almost stationary because the short wavelength components have 
reached their final values, while the long wavelength residual diffusion that remains 
is very weak (see Fig. 8). When such a plateau is convected across the grid by a 
smooth flow, the plateau must broaden another grid point or so to permit at least 
three points to be roughly constant at all times. 

Table II and Fig. 7c display the results for the same profile subjected to succes- 
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sive diffusion and phoenical antidiffusion stages. Here the phenomenon is more 
dramatic. The plateau forms after about three cycles and reaches its asymptotic 
state (to six-place accuracy) after about eight. To within round-off, we find the 
same results using implicit antidiffusion. The plateau forms quickly, as in the 
phoenical case, but now nonzero values for the profile arise to the right and left 
of the three central points, reflecting the interaction between the nonlocal nature of 
the implicit operation and machine round-off. 

FIG. 8. Wave-number dependence of the clipping phenomenon. The ordinate labels the 
relative decrease in amplitude after 100 cycles of phoenical diffusion/antidiffusion using strong 
flux limiting; the abscissia is the mode number K = 2aL/h, where L is the system size and h the 
wavelength. 

Whenever strong flux correction is used in propagating a profile with such 
isolated extrema, characteristic plateaus are observed to form. In the absence of a 
physical steepening mechanism, resolution on a finer scale than this is precluded 
(as it would be in any finite difference algorithm). The rapidity with which clipping 
occurs depends strongly on the breadth of the local extremum. In other words, it 
is strongly wavelength dependent. Figure 8 shows the dependence on mode number 
of the amplitude of a given harmonic, initially equal to unity, after 100 cycles of 
phoenical diffusion/antidiffusion with 7 = Q. The enhanced susceptibility of the 
shorter wavelengths to clipping is clearly displayed. 

A number of specific ideas have been investigated with the goal of eliminating 
or minimizing the effects of clipping. They generally work but are advantageous 
only for particular problems where the character of the solution is essentially known 
in advance. The most useful alternative to strong flux correction is one-sided flux 
limiting [3]. In some problems the solution is known to be positive and to have the 
form of a single pulse or peak growing out of a more or less uniform background. 
An example is the problem of determining the amount of magnetic compression 
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found at the front of a plasma cloud expanding into a stationary magnetized plasma 
[4]. The amplitude and width of this peak are the quantities of physical interest. 
FCT wipes out the train of dispersive ripples which would otherwise trail the 
peak, but the value of the maximum can be too low by 30-40 % in the case of very 
narrow peaks because of clipping. 

Allowing already existing extrema to grow, while legislating against the forma- 
tion of new ones (“weak” flux correction) does not help. Round-off errors lead to 
spurious extrema even in a nominally flat profile; initially tiny, they blow up and 
drive the solution unstable. However, if maxima are allowed to appear or grow 
while minima are restricted as in strong flux correction, the algorithm retains both 
positivity and stability. Intuitively, this reflects the fact that shifting mass from a 
mesh point to its neighbor in such a way that the latter rises dramatically makes 
the former decrease by an equal amount, creating a local minimum. Preventing the 
formation of minima thus implies a measure of control on the formation of maxima. 

The prescription for one-sided flux limiting, replacing Eq. (12) is 

f jc+1,2 = S * maxI% mints .4+, h , If:,,,, III (13) 

with j’ =j - S * 1 and S, dj+iiZ, and fi+,,, defined as before. Use of Eq. (13) 
results in profiles where the troughs can be clipped, but not the peaks. If p is 
strictly negative, it is natural to redefine j’ = j + S * 1. This has the effect of 
allowing minima to grow, but preventing growth of maxima. And if p can take 
either sign, and we are interested in accurately calculating the regions of largest 
excursion from p = 0, the obvious generalization is j’ = j - S . S, where S = 
sign(pJ(double one-sided flux limiting). 

In addition to the flux compression problem cited above, one-sided and double 
one-sided limiters have been successfully used in studies of the motion of barium 
clouds coupled electrostatically to the ionosphere [5] and in construction of a 
finite-difference Vlasov solver [6]. These examples involve solution of a continuity 
equation, or a set of continuity equations, with the velocity field derived from a 
potential field. Application to coupled nonlinear fluid equations in which the 
velocity is propagated by means of a Navier-Stokes equation tells a different story. 
Dispersive ripples are almost as bad as without FCT; the only difference is that 
the ripples are “one-sided.” Hence we conclude as a matter of experience that use 
of one-sided flux limiting should be restricted to solution of convective problems 
with a prescribed flow field. 

In addition to clipping, there is a second kind of nonlinear process called 
“terracing.” It is sometimes observed on the flanks of steep gradients extending 
over several (~5) mesh points. Qualitatively, it arises because an undamped 
dispersive ripple on a sufficiently steep slope may distort the profile markedly 
without actually creating new extrema (Fig. 9a) and hence without signalling its 
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existence to the flux limiter. Eventually such a ripple may grow to the point where 
the flux limiter comes into play. The effect is then to make a weak shelf or terrace 
about three points across (Fig. 9b). Comparisons with conventional schemes show 
that the terraces tend to appear in the same places where large-scale ripples would 
otherwise form. 

MESHPOINTS - 

FIG. 9. Schematic portrayal of formation of a “terrace” on the forward side of an advancing 
region of enhanced fluid density. 

No convenient means of preventing terracing, other than artificial smoothing, 
has been developed, although several experimental techniques have received 
attention. The terracing phenomena really betokens phase errors in the underlying 
transport algorithm rather than deficiencies of the flux corrector. In any case, if 
gradients are relatively gentle or a shock-like jump takes place across just one mesh 
space only, no terraces appear. 

V. GENERALIZED GEOMETRIES 

Everything said so far about solving the continuity equation has related to a one- 
dimensional (rectilinear) coordinate system. In this section we show how the 
techniques already discussed can be carried over to the other coordinate systems in 



272 BOOK, BORlS AND HAIN 

common use. We treat the following topics: multidimensional spaces, curvilinear 
coordinates, and the propagation of irrotational vector fields. 

Multidimensions 

We have restricted the discussion to the 1-D Cartesian form of the continuity 
equation in previous sections. All of the component operations (transport, diffusion 
and antidiffusion) have obvious generalizations to multidimensions. Let 011’ stand 
for any of the operators T, D, A (here denoting un-flux-corrected antidiffusion), 
acting on a vector in the {p} matrix which lies in the direction of the Ith coordinate 
(I = 1, 2,..., N). If 011’ is a second such operator, clearly OI?’ and Oi?’ commute. 
Then the N-dimensional form of the operator in question may be constructed 
according to either 

1 + OtN) = fi (1 + Oi’l’) (14) 
id 

1 + O(N) = 1 + f op. 
i=l 

(15) 

Equation (14) defines a 31V-point formula, Eq. (15) a (2W + I)-point formula. 
Both OfN) and @“) are conservative if O(l) is. If O(l) = T or D, the same is true 
with respect to the property of positivity, as defined in Section I. 

We now wish to generalize the strong flux correction formula (Eq. (12)), but 
encounter serious difficulties. Any formula which limits a fluxfl according to what 
it does to the two points it connects, relative to all their nearest neighbors, would be 
extremely unwieldy. Worse, conceptual difficulties occur when one tried to define 
a formula that works at saddle points, for oblique flows, and in almost one- 
dimensional problems as well as the general case. It is thus not surprising that no 
N-dimensional equivalent to Eq. (12) which treats all the coordinate axes sym- 
metrically has been developed. 

What we have done instead is to employ alternating sweeps through the matrix 
in each of the coordinate directions, using the one-dimensional form of strong flux 
correction. It is clearly most efficient to perform the antidiffusion at the same time 
as the flux limiting, rather than store all the fluxes. For phoenical algorithms, the 
same economy dictates that the diffusive transport for each coordinate direction be 
performed immediately before antidiffusing. Thus we are led to an algorithm in 
which the sequence of operations is (1 + TX + Dl), (1 + A,), (1 + T, + Ds), 
(1 + 4),..., etc. In other words, a timestep-split generalization of the 1-D 
algorithms falls out naturally. 

The timestep splitting, of course, need only be used be used for the flux correction 
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and antidiffusion portions of the calculation provided appropriate antidiffusive 
fluxes can be defined. This approach was used in a two-dimensional flux-corrected 
Lax-Wendroff code with success. In terms of stability properties, however, time- 
step-split algorithms are more lenient than their unsplit counterparts and the split 
algorithms are easier to code and use. Therefore we recommend splitting techniques 
as the easiest and most efficient approach to FCT, whenever the physics of the 
application permits. In practice, this means in all instances, except when a conserva- 
tion condition or a differential identity (e.g., irrotationality; see below) must be 
strictly enforced. 

In Cartesian coordinates a single transport module, separately called for propaga- 
tion in the direction of each successive coordinate axis, is convenient. This is the 
basis for a number of codes written at NRL [7-91. An example is SHAS2D, a fully 
compressible 2-D hydrodynamics code which solves the equations 

(+/at) + v * (pv) = 0; (16) 

(W)(p) + v * @w) = -VP; (17) 

@E/at) + v * [(p + E) . v] = 0; w-9 

(+A.BIw + v * (fA,EV) = 0, (19) 

where pa and pe are “marked” fluids carried around by the flow field v. They 
satisfy 

PA + PE = P9 (20) 

while 

p = (y - l)[E - +pv”]. 

In the Appendix it is shown how Eqs. (16)-(20) are differenced. The transport 
module, called SHASTX, happens to be a phoenical form of SHASTA (see 
Section II above), but it could as easily be replaced by implicit or explicit SHASTA, 
Lax-Wendroff, or some other FCT algorithm. 

Curvilinear Coordinates 

Codes performing analogous operations in r - z and r - 0 geometry have been 
written in similarly modularized fashion [9]. Some care must be taken in proper 
treatment of curvilinear scale factors (e.g., the radial weights in polar coordinates). 
In general it is not desirable to force the same module to perform the transport 
in all coordinate directions. If the motion is predominantly radial (as in an 
explosion) only the radial transport need be flux-corrected. Let us consider the 
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problems associated with a one-dimensional radial continuity equation solver. The 
density p satisfies 

@p /at) + P(a/ar)(rvpu) = 0; (22) 

v + 1 = dimensionality (2 or 3). Denote the result of ordinary transport by {pjT) 
and the result of diffusive transport by {pp’i. Then the definition of flux-corrected 
antidiffusion consistent with conservation is 

(23) 

rj+1,2 = (ri + rj+lW7 

and 

fjL2 = S . max{O, min[S . (rjlrj-d dj-1/2 , I J;.+v~ I, 

S * (rj+Jri-4” di+3/21~* (24) 

Here,h+,,, = ~(j$+i - pj’), dj+i,/z = P;+~ - pj’“, and S = sign(A+,,,). The same 
weights (rj*;1,2/rj)’ also appear in the definition of the diffusion. No other modifica- 
tions of Cartesian FCT are needed. As with conventional algorithms the usual 
difficulties at r = 0 can be sidestepped if one uses a special prescription for V . v at 
the origin or displaces the mesh by a distance small compared with the mesh 
spacing r, so that the origin does not exactly coincide with the mesh point nearest 
r = 0. In general, cognizance must be taken of axes in the physical system. Special 
radial modules analogous to the SHASTX module described in the Appendix have 
been written specifically to provide more flexible and accurate treatments at the 
axis [9]. 

Irrotational Vector Felds 

The problem of maintaining a divergence-free character in the numerical solu- 
tion of field equations by finite differencing is not peculiar to FCT [lo]. It arises in 
the case of incompressible flow, where the continuity equation becomes V * v = 0, 
and in solving Maxwell’s equation, where V . B = 0 must hold. For the latter 
example in ideal magnetohydrodynamics, Faraday’s law 

aBlat = -cV >( E (25) 

becomes the inductive law 

as/at = V x (v x B). (26) 
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Equation (26) can be rewritten as 

@B/at) + V . (vB) = -BV . v, (27) 

which resembles closely the fluid equations we have been considering. For the 
purpose of using FCT, however, the form (26) is more suitable in that V . B = 0 is 
clearly maintained. In fact, Eq. (26) can be differenced as 

B1 - B” = -cSt[V x E]O. 

If the finite difference approximations to the divergence and curl of a vector field 
A are denoted by Vf, . A and Vf, x A, respectively, then we require 

V fd - Vf, x A = 0 

identically (to within round-off). This is trivial to secure in Cartesian coordinates; 
in curvilinear coordinates it often is not. 

Now set 
B1/2 = B” + (&/2)V,, x E”; (28) 

use the material equations (e.g., continuity and momentum) to get P/*; and define 

B= = B” - cat Vf, x El/*, 

where E1/2 is determined from v~/~ and B112, for example in ideal MHD by 

El/2 = -(l/c)+/” x B1/2. 

The array BF represents a solution of Eq. (26) at the new timestep without flux- 
correction. It resembles Lax-Wendroff, but the expression Eq. (28) for the half 
timestep value uses B” at the mesh point instead of an average. In spite of this, the 
scheme is generally stable subject to v&/6x < 1, because E112 has to be found on 
the appropriate mesh by interpolation, a smoothing operation. 

To apply phoenical FCT, we define 

F” = qVf, x B”; (29) 

BFD = BT - Of, x [TV,, x B”]; (30) 
F1 = TV,, x BT; (31) 

B1 = BFD + Vf, x F= 9 (32) 

where FC is a corrected form of F1. Then B1 is the desired result and evidently 
satisfies V,, . BL = V,, . B” = 0. The quantity 7 is a scalar field, representing a 
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variable diffusion coefficient. The definition of FC in terms of F1 and BTD is the only 
nontrivial step in the algorithm. 

A given component of FC in Eq. (32) affects two components of B’, say Brr and 
B,l, through Eq. (23). If we define Fc using a form of Eq. (12) so that ripples in 
III1 are suppressed, then B,l can be badly behaved, and vice versa. No general 
method of preventing this in the present formulation has been found. The difficulty 
lies in the fact that there are only N components of F1 (N being the dimensionality), 
but N* sets of constraints imposed by the requirement of introducing no new 
extrema in any direction for any component of B. 

In some cases of interest this creates no real problem. For example, let 
coordinate 3 be ignorable and suppose flow occurs predominantly in the direction 
of coordinate 1. These assumptions are met for strong radial expansions modeled 
with a spherical or cylindrical 2-D r - B code [4]. Now the only nonvanishing 
component of F is F3 and ripples can only develop in Bz . The definition of Fc 
becomes 

Fc = S . max{O, min[S . d- , / F1 1, S . A,]}, (33) 

where S = -sign (Fl), and the A* are differences of BID. The indices are indicated 
by (-J-) because their exact form depends on the grid staggering. Equation (33) is, 
of course, equivalent to Eq. (12). 

Another approach is also possible. We can write B as the curl of a vector poten- 
tial A. 

B = Of, x A, (34) 

and the current J is in turn the curl of B, 

J = C,, x B. (35) 

Taking the curl of Eq. (26) gives 

ZJ/at = V x [v x (v x B)], 

which can be rewritten in the form 

@J/;lt) + V . Jv = G(v, B), (36) 

where G is a complicated function of the velocity field v, the magnetic field B, and 
their derivatives. This is particularly useful in two-dimensions. In the ignored 
direction we get a 2-D scalar convective-like equation for B3 which can be solved 
directly by FCT techniques. The components of B in the directions of variation, 
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B1 and B2 , can be determined from the current density J3 via the vector potential 
which satisfies a Poisson equation 

V”A, = J3 . (37) 

Thus Bl and B, as finite difference derivatives of A, can be divergence free and yet, 
as integrals of J3, they will be smooth and well behaved. Of course, the scalar 
equation for J3 is solved by FCT methods for maximum accuracy. 

VI. CONCLUSION 

In the Introduction we listed three questions, the answers to which we believe 
are of interest to many workers in the field of computational fluid dynamics. 
Question 1 is primarily addressed in Sections II and IV, question 2 in Section III, 
and question 3 in Section V. In each case we have gone into what may seem to be 
needlessly grubby detail; our aim, however, has been to tell the reader what he 
needs to know in order to use FCT. 
Consistent with this pragmatic approach, we feel that the best way to decided 

whether FCT is useful for a given fluid problem is to try it. This is readily done; as 
we have shown, it is usually trivial to “flux-correct” a conventional algorithm. 
Frequently the dramatic immediate improvement in the physicalness of results 

TABLE III 

Summary of results of the standard square wave test for the 
algorithms described in this paper 

Algorithm 

Donor cell 

Leapfrog (zero diffusion) 

Lax-Wendroff (zero diffusion) 

Flux-corrected diffusion 

Flux-corrected donor cell 

Flux-corrected leapfrog (1st version) 

Flux-corrected leapfrog (2nd version) 

SHASTA (explicit) 

SHASTA (implicit) 

SHASTA (phoenical) 

Mean absolute error 
- 

.260 

.245 

.175 

.082 

.064 

.074 

.057 

.057 

.049 

.052 
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near steep gradients is all the comparison one needs. The fourth paper in the 
present series will describe the application of FCT to about a dozen such problems, 
along with the computational novelties encountered in the process. Some of these 
examples were intractable by all other techniques tried. 

For the theoretically inclined, results of a test problem possessing an analytic 
solution may seem desirable. The square wave test used here and in FCT/I is 
such a test, as are the shock wave and exploding diaphragm tests described in 
FCT/l. Rather than presenting the results of a large number of these problems, we 
here restrict ourselves to a compilation of the mean absolute errors found in the 
square wave test described in Section II (Table III). While it may be felt that such 
a test artificially oversimplifies the relative performance of various algorithms, this 
is generally the case when one imposes the constraint of analytic solubility. 

In conclusion, we believe we have shown why FCT works and how to use it in a 
broad class of problems. We anticipate that other users will experience the same 
success. 

APPENDIX: SHAS2D [8] AND SHASTX [9] 

SHAS2D solves the equations of two-dimensional fully compressible hydro- 
dynamics in an FCT finite-difference approximation. This numerical algorithm is 
specifically designed to handle high Mach-number shocks as well as smooth, nearly 
incompressible, low Mach-number flows. The physical equations solved by the 
basic code in conservation form are Eqs. (16)-(21) of Section V. 

They are solved by a timestep-splitting procedure using a single subroutine 
called SHASTX which advances over one timestep a generalized one-dimensional 
continuity equation of the form 

aFlat = -(a/ax)(h) - s, (Al) 

where S is a given scalar conservative source term and where the velocity field u is 
assumed given and fixed throughout the cycle. If we denote by Y[F, v, S, 61, at] the 
“SHASTX” operator which advances {Fi} by a timestep St on a grid of spacing 61 
using given sequences {Q} and (S,}, then a complete cycle of SHAS2D can be written 
as follows: 

the x half cycle 

tr,O = (p~,)~/p~ (similarly vUo), 
PO = (y - l)[EO - &p”(vZo)* - +p”(u,o)2], 

p = Y[pO, L’,O, 0, sx, &/2], 
@~3c)h= = ~[p[(p~~)o, tl,o, apyax, sx, 6t/2], 
@bY= = ~K.p,)“, Go1 0, sx, WI, 

Ehx = Y[Eo, ~~0, (a(Pov,oyax), 6x, st/2]; 

642) 
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the x whole cycle 

ahz” Es ~~~~~~~~~~ (similarly uy), 

P”” = (y - l)[P - *ph”(t$T)* - &ph”($)2], 

pz = Y[pO, UF, 0, 6x, St], 

(Jq.)” = Y[(poJO, up, (aPhZ/ax), 6x, St], 

(puy)” = apuy)“, $9 0, sx, w, 
E” = Y[EO, u,“z; (a(P%~“)/ax), 6x, St], 

#&.B = q24.B, d?, 0, h w; 

(A3) 

the y half cycle 

v Y 5 = (pQ/pz (similarly uzz), 

P” = (y - l)[E” - ~ptp”(uJc3c>2 - $&I,“)“], 

ph’ = 9[p”, LJu2, 0, 6y, 6t/2], 

@f.LP = a(pw, bZ, 0, SY, w4, 
(PYP = mP%)“, ~bVWY), SY, WI, 

Eh’ = Y[E”, uys, W”~,“PY), SY, WI; 

(A4) 

and finally the y whole step 

u,hv = (p~#~/$’ (similarly uF), 

Phy = (y - l)[E”” - &?“(v~“)” - +$“(o;“)“], 

(P&J” = WphJ”, l?I 0, sy, 64, 
(Pu,)” = am”, c, W”V.Y), SY, w, 

En = 9’[E’, uyh’, @(P%;Y)/ay), 6y, at], 

pnA.Li = q&l, zty, 0, @A w. 

(A5) 

In Eqs. (A2)-(A5) the superscript “0” stands for old, “hx” stands for half-step x, 
“x” stands for full step x, “hy” stands for half-step y, and ‘W’ stands for new. At 
the completion of all these operations throughout the grid, all of the physical 
variables have been advanced in time by St. 

The time integration, as can be seen above, is a simple midpoint rule, second- 

581/18/3-4 
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order accurate, where the dependent driving variables v and P are determined at 
the half step by a forward differenced first-order algorithm. These half-step quanti- 
ties are then used to advance all of the physical variables a full step in a time- 
centered manner. The overall algorithm given has been used effectively on a wide 
variety of difficult, long running problems. 

Since there is no staggering in space or time in this code, the timestep can be 
varied freely from cycle to cycle. Of course the ,Y half and whole steps consist of 
one-dimensional integrations of each row (fixed y) independently and the y half 
and whole steps consist of one-dimensional integrations of each column (fixed x) 
independently. In SHAS2D these individual integrations in both directions are 
performed by a single, highly optimized subroutine called SHASTX. The finite- 
difference formulae within the SHASTX routine itself are given below. 

Suppose {Fio}, {vi}, {S,}, 6x and St are given for i = 1, 2,..., N on a single unstag- 
gered spatial grid and boundary prescriptions are given for determining Fi and 
FN using the intermediate values of Fi and the velocities. The following equations 
then define the 9’ (SHASTX) operator used above in Eqs. (A2)-(AS) to solve 
Eq. (Al). First, untransported fluxes and a diffused (but untransported) solution 
are determined. 

f!++l,z = Q@+, - Fi% W) 

f’iD = Ft + (f Xl/z - f Lid, 647) 

where the “D” superscript stands for diffused. 
Next, some transport convection factors are computed for each grid point, These 

factors need only be computed once for all of the physical variables at a given grid 
point. 

!a+ = %-/(&I + Q-1, 

Q,, = 1 - Qi+. 

Next a transported diffused solution is computed, 

CD = 4[Qi’l”fP+l/z - J[Qi-I” f t,,, + Qi’V’i” - &+,,2) + Qi-Vi” 

and then changes due to transport are computed as follows: 

SF,= = FrD - FiD. 

- 

W) 

649) 

(AlO) 

&-l/2), 

(All) 

6412) 
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Using these changes due to transport, the fluxes Fio are modified and differences in 
the transported diffused solutions are computed. 

6F,z,, = FEr,9 - F,TD, (A13) 

f Et,,* = f!+,,,, + 6(@+, - @irk (A14) 

Using these fluxes and differences, the usual flux correction and antidiffusion is 
performed as follows: 

f L, = s&f Ld * max{O, min[sgn(fr+1,2) . GF~!l,, , 

abs(fiT,A sgn(fiT,l12) * ~F%21~~ (A15) 
Fif = FTD - (f&, -f&). 6416) 

Equation (A16) is the final flux-corrected transport solution for the cycle. The 
source term in Eq. (Al) appears in Eq. (All). When S is aP/ax, for example in 
Eqs. (A2), Si+,,, is computed as follows: 

&II2 = (&/2Sx)[Pf+, - P?]. 6417) 

Figure 10 is a simplified flow chart of the SHAS2D logic, reflecting the layout 
of the main program. After initializing the run and the control data, the input 
parameters, the physical problem parameters, and the physical variable arrays, the 
main loop is entered. Each cycle during the main timestep loop is checked for 
restart and dump conditions. Every cycle of the physical equations of motion 
begins with a computation of the longest timestep which will be numerically 
stable for the cycle. This computation is performed in DTSET. 

Mr. E. Dent of NRL has constructed a Fortran compatible hand-coded version 
of SHASTX for the IBM 360/91 at ORNL. The Fortran reference version runs 
about 50% slower than this new version and now serves primarily to document 
the algorithm. Running time is also minimized by choosing the maximum stable 
timestep via the routine DTSET mentioned above and by very careful coding in all 
of the Fortran subroutines associated with performing the fluid-dynamics part of 
the calculation. 

A series of timings of the pertinent parts of SHAS2D has been performed to 
help in timing analysis and in code optimization. The Fortran version of SHASTX 
required about 240pseclgrid point-cycle for the fluid dynamics and the hand- 
coded version has reduced this to ~160 psec/grid point-cycle. The entire remainder 
of the physics calculations (variable selection, boundary-condition calculation, 
source computation, variable restoration, timestep calculation, and underflow 
elimination) also takes about 160 psec/grid point-cycle. By far the largest amount 
of time here is spent in variable selection, source calculation, and variable restora- 
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-1 step no. = step no. + 1 j 

SHAS2D FLOWCHART 

I ---* t I 

p&zq 

+, 
1 

check for possible under- -. .- 
check for continuation flows ana set very small 

values to zero (EUFLOW) 

FIG. 10. SHAS2D flow chart. The main elements of the program control logic and physics 
calculations are shown as contained in the main program. INTEGL and INTEGJ contains the 
detailed solution of the physical equations as described in the Appendix. 

tion. Thus a complete cycle on a 40 x 40 grid takes about .52 sec. For comparison, 
a Fortran two-dimensional Lax-Wendroff two-step FCT code was written which 
requires .54 set/per timestep and must use timesteps roughly a factor d/z shorter. 
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